

Valvular Heart Disease 2016: Challenges and Future Prospects

Robert O. Bonow, MD, MS

Northwestern University Feinberg School of Medicine
Bluhm Cardiovascular Institute
Northwestern Memorial Hospital
Editor-in-Chief, JAMA Cardiology

No Relationships to Disclose

2008 Focused Update Incorporated Into the ACC/AHA 2006 Guidelines for the Management of Patients With Valvular Heart Disease

A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease)

Endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons

2006 Writing Committee Members

Robert O. Bonow, MD, MACC, FAHA, Chair

Blase A. Carabello, MD, FACC, FAHA Kanu Chatterjee, MB, FACC Antonio C. de Leon, JR, MD, FACC, FAHA David P. Faxon, MD, FACC, FAHA Michael D. Freed, MD, FACC, FAHA William H. Gaasch, MD, FACC, FAHA Bruce W. Lytle, MD, FACC Rick A. Nishimura, MD, FACC, FAHA
Patrick T. O'Gara, MD, FACC, FAHA
Robert A. O'Rourke, MD, MACC, FAHA
Catherine M. Otto, MD, FACC, FAHA
Pravin M. Shah, MD, MACC, FAHA
Jack S. Shanewise, MD*

2008 Focused Update Incorporated Into the ACC/AHA 2006 Guidelines for the Management of Patients With Valvular Heart Disease

A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease)

Endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons

2006 Writing Committee Members

Robert O. Bonow, MD, MACC,

Blase A. Carabello, MD, FACC, Kanu Chatterjee, MB, FACC Antonio C. de Leon, JR, MD, FA David P. Faxon, MD, FACC, FA Michael D. Freed, MD, FACC, J William H. Gaasch, MD, FACC Bruce W. Lytle, MD, FACC

European Heart Journal doi:10.1093/eurheartj/ehs109

Guidelines on the management of valvular heart disease (version 2012)

Authors/Task Force Members: Alec Vahanian (Chairperson) (France)*, Ottavio Alfieri (Chairperson)* (Italy), Felicita Andreotti (Italy), Manuel J. Antunes (Portugal), Gonzalo Barón-Esquivias (Spain), Helmut Baumgartner (Germany), Michael Andrew Borger (Germany), Thierry P. Carrel (Switzerland), Michael De Bonis (Italy), Arturo Evangelista (Spain), Volkmar Falk (Switzerland), Bernard lung (France) Patrizio Lancellotti (Belgium), Luc Pierard (Belgium), Susanna Price (UK),

The evidence base is limited by an inadequate number of randomized clinical trials

ny), Gerhard Schuler (Germany), Janina Stepinska en), Johanna Takkenberg (The Netherlands), tephan Windecker (Switzerland), Jose Luis Zamorano d)

2008 Focused Update Incorporated Into the ACC/AHA 2006 Guidelines for the Management of Patients With Valvular Heart Disease

A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease)

Endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons

2006 Writing Committee Members

Robert O. Bonow, MD, MACC,

Blase A. Carabello, MD, FACC, Kanu Chatterjee, MB, FACC Antonio C. de Leon, JR, MD, FA David P. Faxon, MD, FACC, FA Michael D. Freed, MD, FACC, J William H. Gaasch, MD, FACC Bruce W. Lytle, MD, FACC

European Heart Journal doi:10.1093/eurheartj/ehs109

Guidelines on the management of valvular heart disease (version 2012)

Authors/Task Force Members: Alec Vahanian (Chairperson) (France)*, Ottavio Alfieri (Chairperson)* (Italy), Felicita Andreotti (Italy), Manuel J. Antunes (Portugal), Gonzalo Barón-Esquivias (Spain), Helmut Baumgartner (Germany), Michael Andrew Borger (Germany), Thierry P. Carrel (Switzerland), Michael De Bonis (Italy), Arturo Evangelista (Spain), Volkmar Falk (Switzerland), Bernard lung (France) Patrizio Lancellotti (Belgium), Luc Pierard (Belgium), Susanna Price (UK),

Hence, virtually all of the recommendations are based on expert consensus (Level C)

ny), Gerhard Schuler (Germany), Janina Stepinska en), Johanna Takkenberg (The Netherlands), tephan Windecker (Switzerland), Jose Luis Zamorano id)

2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease

A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines

Developed in Collaboration With the American Association for Thoracic Surgery, American Society of Echocardiography, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Anesthesiologists, and Society of Thoracic Surgeons

Writing Committee Members*

Rick A. Nishimura, MD, MACC, FAHA, Co-Chair†

Catherine M. Otto, MD, FACC, FAHA, Co-Chair†

Robert O. Bonow, MD, MACC, FAHA† Blase A. Carabello, MD, FACC*† John P. Erwin III, MD, FACC, FAHA‡ Robert A. Guyton, MD, FACC*§ Patrick T. O'Gara, MD, FACC, FAHA† Carlos E. Ruiz, MD, PhD, FACC† Nikolaos J. Skubas, MD, FASE¶

Paul Sorajja, MD, FACC, FAHA#
Thoralf M. Sundt III, MD* **††
James D. Thomas, MD, FASE, FACC, FAHA‡‡

*Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry and the rentities may apply; see Appendix 1 for recusal information. †ACC/AHA representative. ‡ACC/AHA Task Force on Performance Measures liaison. §ACC/AHA Task Force on Practice Guidelines liaison. ¶Society of Cardiovascular Angiography and Interventions representative. *Memcican Association for Thoracic Surgery representative. ††Society of Thoracic Surgeon representative. ‡‡American Society of Echocardiography representative.

ement of valvular heart

n (Chairperson) (France)*, Ottavio Alfieri

Gonzalo Barón-Esquivias (Spain), Helmut Baumgartner (Germany), Michael Andrew Borger (Germany), Thierry P. Carrel (Switzerland), Michael De Bonis (Italy), Arturo Evangelista (Spain), Volkmar Falk (Switzerland), Bernard Iung (France), Patrizio Lancellotti (Belgium), Luc Pierard (Belgium), Susanna Price (UK), Hans-Joachim Schäfers (Germany), Gerhard Schuler (Germany), Janina Stepinska (Poland), Karl Swedberg (Sweden), Johanna Takkenberg (The Netherlands), Ulrich Otto Von Oppell (UK), Stephan Windecker (Switzerland), Jose Luis Zamorano (Spain), Marian Zembala (Poland)

Stages of Valvular Heart Disease

Stage	Definition		
Α	Risk of valve disease RHD, BAV, MVP, I	HF,	CVD risk
В	Mild - moderate asymptomatic disease		
С	Severe valve disease but asymptomatic		
	C1: Normal LV function		
	C2: Depressed LV function		
D	Severe, symptomatic valve disease		

Degenerative MR: primary valve disease

Functional MR: primary myocardial disease

Degenerative MR: primary valve disease

Functional MR: primary myocardial disease

Indications for mitral valve surgery for degenerative MR?

Indications for mitral valve surgery for degenerative MR?

Symptomatic patients

Indications for mitral valve surgery for degenerative MR?

- Symptomatic patients
- Asymptomatic patients
 - LV systolic dysfunction

class I

class I

Indications for mitral valve surgery for degenerative MR?

- Symptomatic patients
- Asymptomatic patients
 - LV systolic dysfunction

LVEF <60%

class I

class I

Indications for mitral valve surgery for degenerative MR?

- Symptomatic patients
- Asymptomatic patients
 - LV systolic dysfunction

LVEF <60% LVSD >40mm class I

class I

Indications for mitral valve surgery for degenerative MR?

- Symptomatic patients
- Asymptomatic patients
 - LV systolic dysfunction
 - Pulmonary hypertension

class I

class I

class lla

Indications for mitral valve surgery for degenerative MR?

- Symptomatic patients
- Asymptomatic patients
 - LV systolic dysfunction
 - Pulmonary hypertension

class I

class I

class Ila

PASP >50 mmHg at rest

Indications for mitral valve surgery for degenerative MR?

- Symptomatic patients
- Asymptomatic patients
 - LV systolic dysfunction
 - Pulmonary hypertension
 - Atrial fibrillation

class I

class I

class IIa

class Ila

Indications for mitral valve surgery for degenerative MR?

- Symptomatic patients
- Asymptomatic patients
 - LV systolic dysfunction
 - Pulmonary hypertension
 - Atrial fibrillation
 - Normal LV function, repair feasible?

class I

class I

class lla

class Ila

Indications for mitral valve surgery for degenerative MR?

- Symptomatic patients
- Asymptomatic patients
 - LV systolic dysfunction
 - Pulmonary hypertension
 - Atrial fibrillation
 - Normal LV function, repair feasible?

class I

class I

class lla

class Ila

MV repair to improve survival?

Indications for mitral valve surgery for degenerative MR?

- Symptomatic patients
- Asymptomatic patients
 - LV systolic dysfunction
 - Pulmonary hypertension
 - Atrial fibrillation
 - Normal LV function, repair feasible?

class I

class I

class lla

class Ila

MV repair to improve survival? What is the natural history?

- Symptomatic patients
- Asymptomatic patients
 - LV systolic dysfunction
 - Pulmonary hypertension
 - Atrial fibrillation
 - Normal LV function, repair

class I

class I

class Ila

class Ila

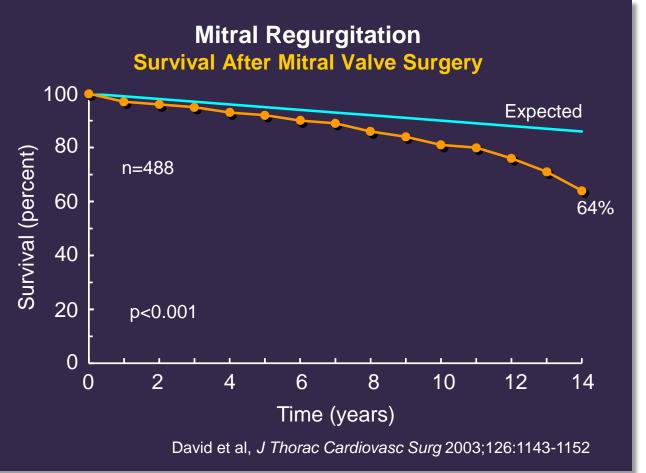
Asymptomatic severe degenerative MR:

- 66% come to surgery in 5 years because of symptoms, LV dysfunction, pulmonary hypertension or AF
- Long-term postoperative survival is worse if surgery is performed after patients become symptomatic

Surgery for Acquired Cardiovascular Disease

Late outcomes of mitral valve repair for floppy valves: Implications for asymptomatic patients

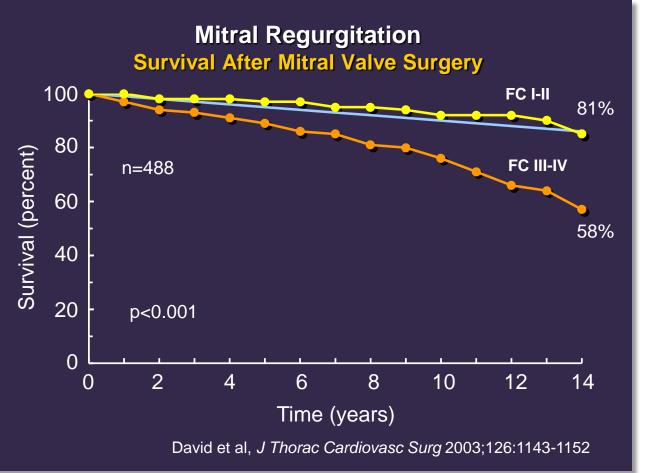
Tirone E. David, MD Joan Ivanov, PhD Susan Armstrong, MSc Harry Rakowski, MD


J Thorac Cardiovasc Surg 2003;125:1143-1152

Surgery for Acquired Cardiovascular Disease

Late outcome Implications

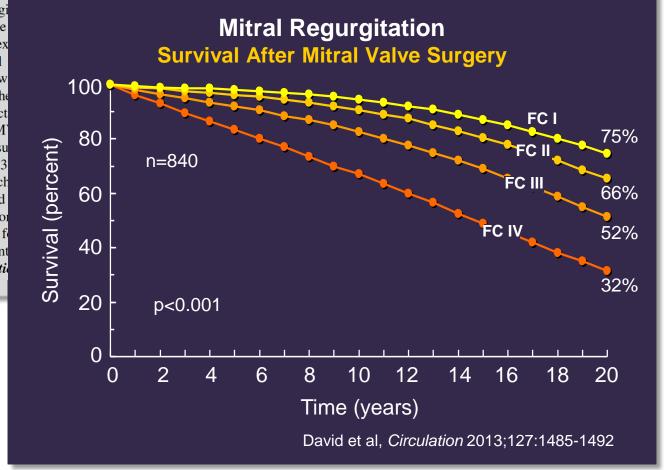
Tirone E. David, MD Joan Ivanov, PhD Susan Armstrong, MS Harry Rakowski, MD



Surgery for Acquired Cardiovascular Disease

Late outcome Implications

Tirone E. David, MD Joan Ivanov, PhD Susan Armstrong, MS Harry Rakowski, MD



Late Outcomes of Mitral Valve Repair for Mitral Regurgitation Due to Degenerative Disease

Tirone E. David, MD; Susan Armstrong, MSc; Brian W. McCrindle MD; Cedric Manlhiot, BSc

Background—The pathologi (MR) is broad, and there pathologies. This study ex Methods and Results—All were prospectively follow of 10.4 years. Clinical, he Age, left ventricular eject multivariable analysis. M patients had repeat MV su severe MR developed in 3 degree of myxomatous ch associated with increased freedom from moderate or Conclusions—MV repair f rest and impaired left vent recurrent MR. (Circulation

Indications for MV repair for asymptomatic primary MR:

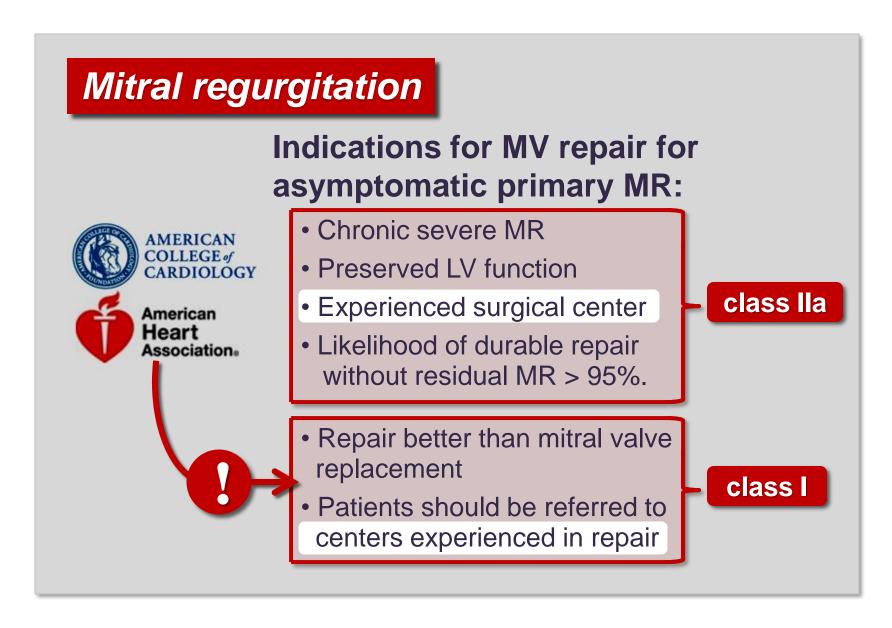
- Chronic severe MR
- Preserved LV function
- Experienced surgical center
- Likelihood of durable repair without residual MR > 95%

class IIa

Indications for MV repair for asymptomatic primary MR:

- Chronic severe MR
- Preserved LV function
- Experienced surgical center
- Likelihood of durable repair without residual MR > 95%

class IIa


- Preserved LV function
- Likelihood of durable repair and low risk for surgery, and
- LA dilatation >60 ml/m2

-- or --

Exercise PAP >60 mmHg

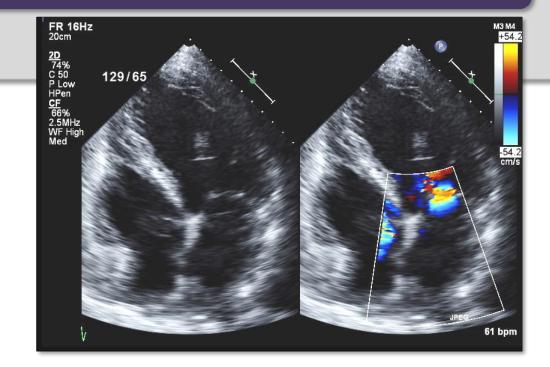
class IIb

EDITORIAL COMMENT

The Time Has Come to Define Centers of Excellence in Mitral Valve Repair

Robert O. Bonow, MD, MS, David H. Adams, MD

J Am Coll Cardiol 2016;67:499-501


Centers of Excellence in Mitral Valve Repair *Criteria:*

- MV surgery volume requirement (center and surgeon)
- Expert periprocedural imaging capabilities
- Access to transcatheter technology
- Transparency regarding outcomes including: repair rates, mortality rates, stroke rates, repair durability

Primary MR: primary valve disease

Secondary MR: primary myocardial disease

Primary MR: primary valve disease

Secondary MR: primary myocardial disease

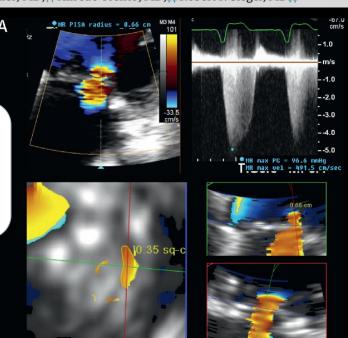
- Diagnostic dilemmas
- Therapeutic dilemmas

Imprecision in grading severity of secondary MR

© 2014 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER INC.

ISSN 0735-1097/\$36.00 http://dx.doi.org/10.1016/j.jacc.2014.10.016

REVIEW TOPIC OF THE WEEK

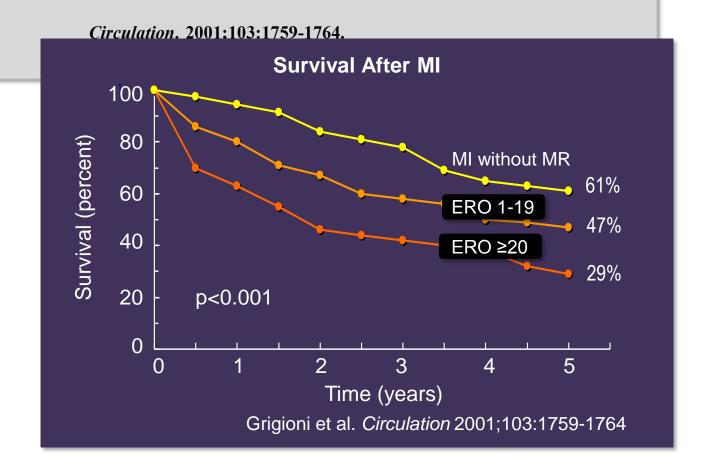

Defining "Severe" Secondary Mitral Regurgitation

Emphasizing an Integrated Approach

Paul A. Grayburn, MD,*† Blasé Carabello, MD,‡ Judy Hung, MD,§ Linda D. Gillam, MD,|| David Liang, MD,¶ Michael J. Mack, MD,# Patrick M. McCarthy, MD,** D. Craig Miller, MD,†† Alfredo Trento, MD,‡‡ Robert J. Siegel, MD‡‡

J Am Coll Cardiol 2014;54:2792-2801

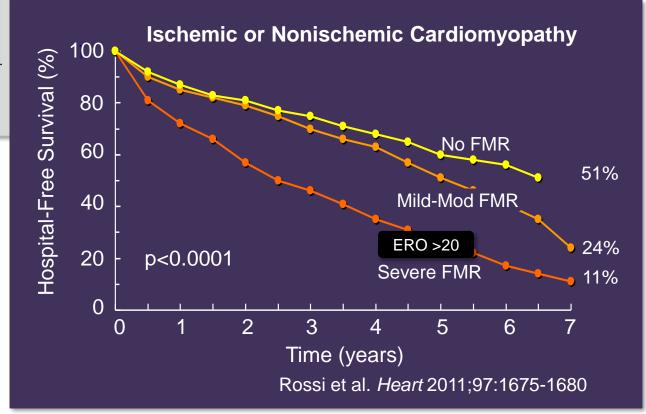
What is "severe" secondary MR?



Ischemic Mitral Regurgitation

Long-Term Outcome and Prognostic Implications With Quantitative Doppler Assessment

Francesco Grigioni, MD; Maurice Enriquez-Sarano, MD; Kenton J. Zehr, MD; Kent R. Bailey, PhD; A. Jamil Tajik, MD

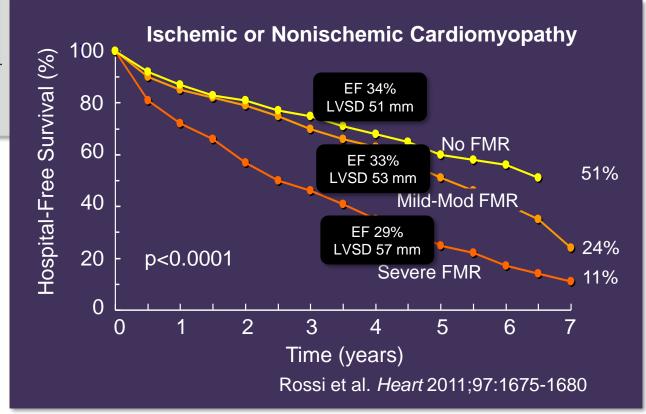


ORIGINAL ARTICLE

Independent prognostic value of functional mitral regurgitation in patients with heart failure. A quantitative analysis of 1256 patients with ischaemic and non-ischaemic dilated cardiomyopathy

Andrea Rossi,¹ Frank L Dini,² Mariantonietta Cicoira,¹ Silvia Stefano Ghio,⁵ Maurice Enriqu

Heart 2011;97:1675—1680

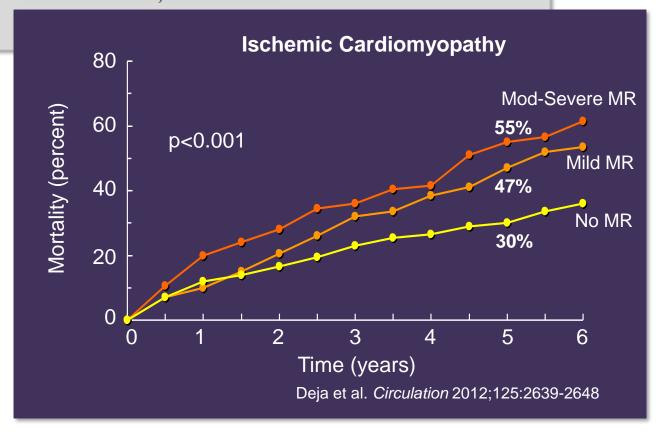


ORIGINAL ARTICLE

Independent prognostic value of functional mitral regurgitation in patients with heart failure. A quantitative analysis of 1256 patients with ischaemic and non-ischaemic dilated cardiomyopathy

Andrea Rossi,¹ Frank L Dini,² Mariantonietta Cicoira,¹ Silvia Stefano Ghio,⁵ Maurice Enriqu

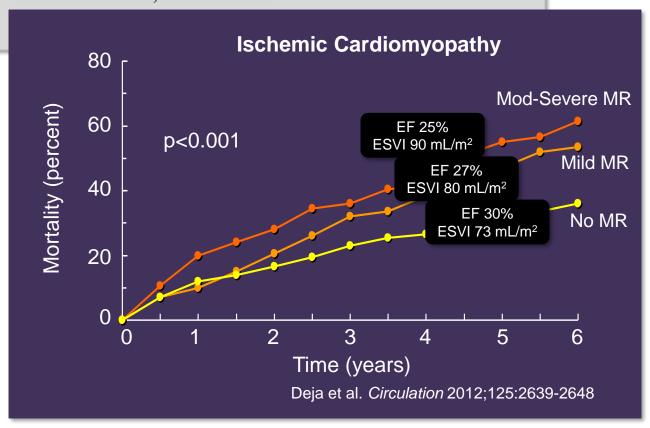
Heart 2011;97:1675—1680


Valvular Heart Disease

Influence of Mitral Regurgitation Repair on Survival in the Surgical Treatment for Ischemic Heart Failure Trial

Marek A. Deja, Paul A. Grayburn, Benjamin Sun, Vivek Rao, Lilin She, Michal Krejca, Anil R. Jain, Yeow Leng Chua, Richard Daly, Michele Senni, Krzysztof Mokrzycki, Lorenzo Menicanti, Jae K. Oh, Robert Michler, Krzysztof Wróbel, Andre Lamy, Eric J. Velazquez, Kerry L. Lee and Robert H. Jones

Circulation. 2012;125:2639-2648


Valvular Heart Disease

Influence of Mitral Regurgitation Repair on Survival in the Surgical Treatment for Ischemic Heart Failure Trial

Marek A. Deja, Paul A. Grayburn, Benjamin Sun, Vivek Rao, Lilin She, Michal Krejca, Anil R. Jain, Yeow Leng Chua, Richard Daly, Michele Senni, Krzysztof Mokrzycki, Lorenzo Menicanti, Jae K. Oh, Robert Michler, Krzysztof Wróbel, Andre Lamy, Eric J. Velazquez, Kerry L. Lee and Robert H. Jones

Circulation. 2012;125:2639-2648

Prevalence of MR in Patients with LV Dysfunction

		N	Prevalence MR
Yiu et al	Circulation 2000	128	63%
Grigioni et al	Circulation 2001	303	64%
Koelling et al	Am Heart J 2002	1436	49% *
Trichon et al	Am J Cardiol 2003	2057	56%
Robbins et al	Am J Cardiol 2003	221	59%
Cleland et al	N Engl J Med 2004	605	50% *
Grayburn et al	J Am Coll Cardiol 2005	336	77%
Bursi et al	Circulation 2005	303	50%
Acker et al	J Thorac CV Surg 2006	300	66%
Di Mauro et al	Ann Thorac Surg 2006	239	75%
Rossi et al	Heart 2011	1300	74%
Deja et al	Circulation 2012	599	63%
Onishi et al	Circ Heart Fail 2013	277	48% *

^{*}Patients with moderate to severe MR

Secondary mitral regurgitation:
...a marker of a sicker LV
- or ...a contributor to a sicker LV?

Secondary mitral regurgitation:
...a marker of a sicker LV
- or ...a therapeutic target?

Therapies that produce beneficial reverse remodeling also reduce severity of functional MR

Guideline-directed medical therapy for heart failure, including CRT

class I

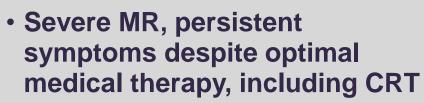
Guideline-directed medical therapy for heart failure, including CRT

class I

Indications for mitral valve surgery:

 Patients with severe MR undergoing CABG or AVR

class lla


Guideline-directed medical therapy for heart failure, including CRT

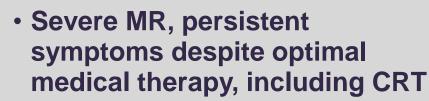
class I

Indications for mitral valve surgery:

 Patients with severe MR undergoing CABG or AVR

class lla

class IIb

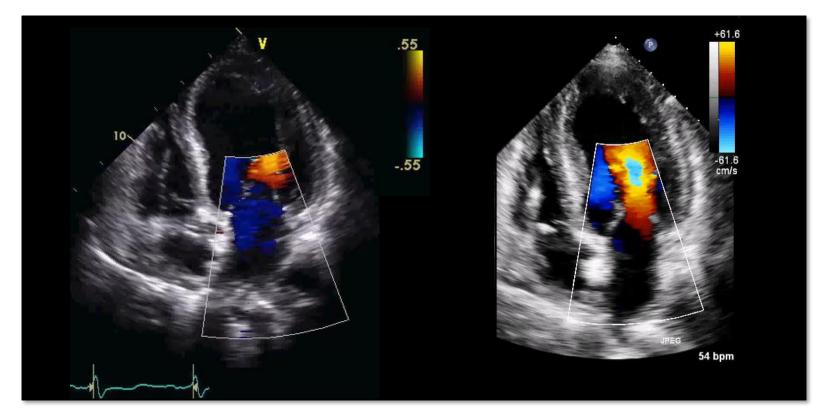

Guideline-directed medical therapy for heart failure, including CRT

class I

 Patients with severe MR undergoing CABG or AVR

class lla

class IIb


 Patients with moderate MR undergoing CABG or AVR

class IIb

Baseline

Optimized Medical Therapy and Biventricular Pacing

FOCUS ISSUE: STRUCTURAL HEART DISEASE

Clinical Research

Correction of Mitral Regurgitation in Nonresponders to Cardiac Resynchronization Therapy by MitraClip Improves Symptoms and Promotes Reverse Remodeling

Angelo Auricchio, MD, PhD,* Wolfgang Schillinger, MD,† Sven Meyer, MD,‡ Francesco Maisano, MD,§ Rainer Hoffmann, MD,|| Gian Paolo Ussia, MD,¶ Giovanni B. Pedrazzini, MD,* Jan van der Heyden, MD,# Simona Fratini, MD, PhD,** Catherine Klersy, MD, MSC,†† Jan Komtebedde, DVM,* Olaf Franzen, MD,‡ on behalf of the PERMIT-CARE Investigators

Lugano, Switzerland; Göttingen, Hamburg, and Aachen, Germany; Milan, Catania, L'Aquila, and Pavia, Italy; and Nieuwegein, the Netherlands

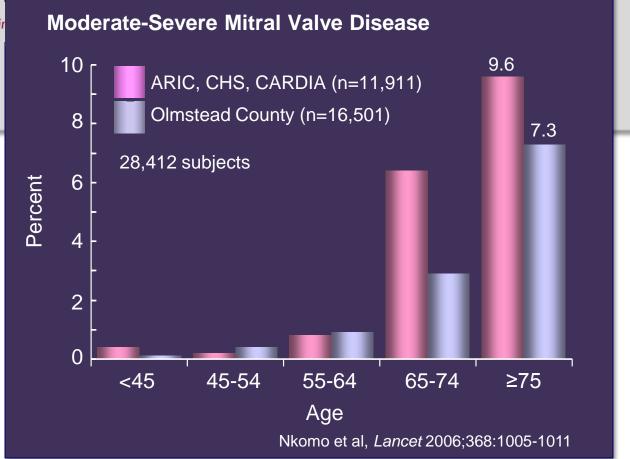
J Am Coll Cardiol 2011;58:2183-9

Indications for transcatheter MV repair for severe secondary MR:

- Severe secondary MR
- Severely symptomatic
- Prohibited or high surgical risk
- Reasonable life expectancy

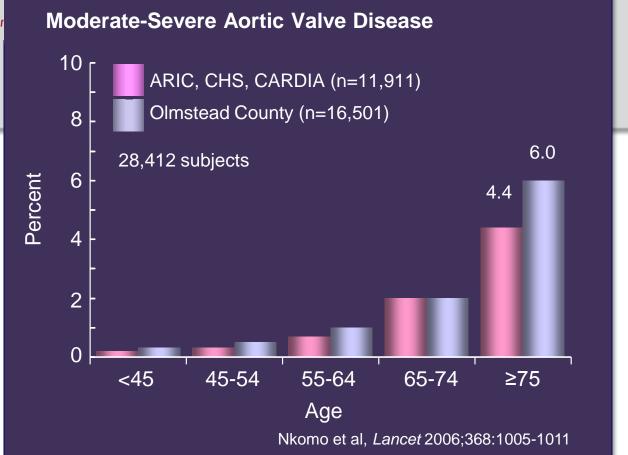
class IIb

Prevalence of MR in Patients with LV Dysfunction


		N	Prevalence MR
Yiu et al	Circulation 2000	128	63%
Grigioni et al	Circulation 2001	303	64%
Koelling et al	Am Heart J 2002	1436	49% *
Trichon et al	Am J Cardiol 2003	2057	56%
Robbins et al	Am J Cardiol 2003	221	59%
Cleland et al	N Engl J Med 2004	605	50% *
Grayburn et al	J Am Coll Cardiol 2005	336	77%
Bursi et al	Circulation 2005	303	50%
Acker et al	J Thorac CV Surg 2006	300	66%
Di Mauro et al	Ann Thorac Surg 2006	239	75%
Rossi et al	Heart 2011	1300	74%
Deja et al	Circulation 2012	599	63%
Onishi et al	Circ Heart Fail 2013	277	48% *

^{*}Patients with moderate to severe MR

Burden of valvular heart diseases: a population-based study


Vuyisile T Nkomo, Julius M Gardir

Burden of valvular heart diseases: a population-based study

Vuyisile T Nkomo, Julius M Gardir

Congenital AS

Calcific AS

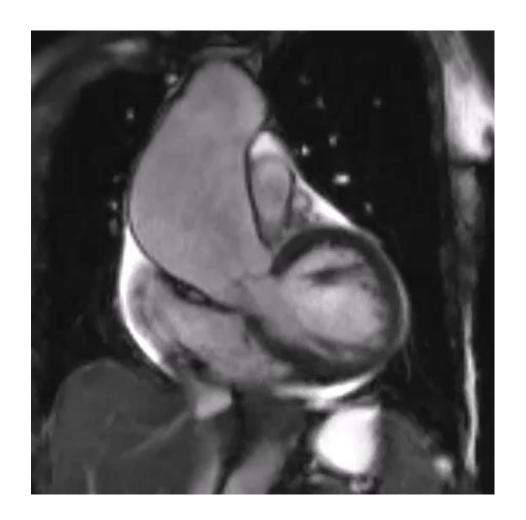
Rheumatic AS

Congenital AS

Calcific AS

Roberts and Ko, *Circulation* 2005;111:920-925

Rheumatic AS


Congenital AS

Calcific AS

Roberts and Ko, *Circulation* 2005;111:920-925

The NEW ENGLAND JOURNAL of MEDICINE

REVIEW ARTICLE

John A. Jarcho, M.D., Editor

Aortic-Valve Stenosis — From Patients at Risk to Severe Valve Obstruction

Catherine M. Otto, M.D., and Bernard Prendergast, D.M.

N Engl J Med 2014;371:744-56.

Normal leaflets	Aortic sclerosis	Aortic stenosis	
At risk	Disease initiation	Progressive disease	Valve obstruction
or or			

By John Ross, Jr., M.D. and Eugene Braunwald, M.D.

THE ADVENT of corrective operations for various forms of heart disease has placed increasing emphasis upon the need for accurate information concerning the natural history of patients with potentially correctible lesions. An understanding of the natural course assumes particular importance in the case of aortic stenosis because of the significant incidence of sudden death associated with this disease and the grave prognosis that appears to accompany the onset of certain symptoms,

patients with isolated valvular aortic stenosis of rheumatic etiology and patients without a history of rheumatic fever who have isolated calcific aortic stenosis; many of the latter patients are now considered to have developed calcification and stenosis of a congenitally bicuspid valve. The review will focus primarily on the prognostic significance of three major symptoms—angina pectoris, syncope, and symptoms related to left ventricular failure

From the Cardiology Branch, National Heart Institute, Bethesda, Maryland.

Supplement V to Circulation, Vols. XXXVII and XXXVIII, July 1968

By JOHN Ross, JR., M.D. AND EUGENE BRAUNWALD, M.D.

THE ADVENT of corrective operations for various forms of heart disease has placed increasing emphasis upon the need for accurate information concerning the natural history of patients with potentially correctible lesions. An understanding of the natural course assumes particular importance in the case of aortic stenosis because of the significant incidence of sudden death associated with this disease and the grave prognosis that appears to accompany the onset of certain symptoms,

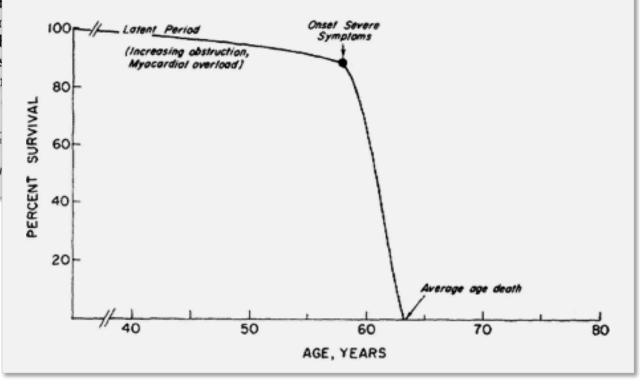
patients with isolated valvular aortic stenosis of rheumatic etiology and patients without a history of rheumatic fever who have isolated calcific aortic stenosis; many of the latter patients are now considered to have developed calcification and stenosis of a congenitally bicuspid valve. The review will focus primarily on the prognostic significance of three major symptoms—angina pectoris, syncope, and symptoms related to left ventricular failure

From the Cardiology Branch, Na stitute, Bethesda, Maryland.

Supplement V to Circulation, Vols.

... the grave prognosis that appears to accompany the onset of certain symptoms

By John Ross, Jr., M.D. and Eugene Braunwald, M.D.


THE ADVENT of corrective operations for various forms of heart disease has placed increasing emphasis upon the need for accurate information concerning the natural history of patients with potentially correctible

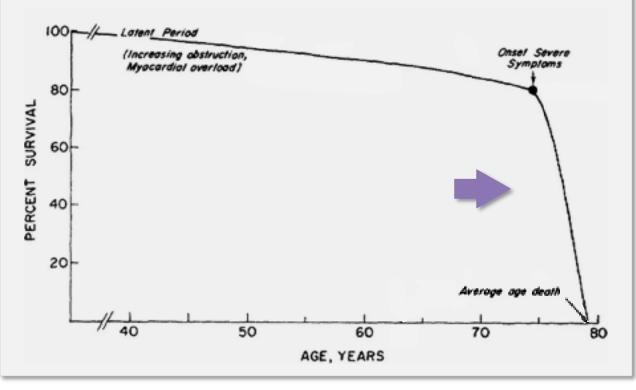
lesions. An understanding of assumes particular importar aortic stenosis because of the dence of sudden death ass disease and the grave progto accompany the onset of

From the Cardiology Branch, National He stitute, Bethesda, Maryland.

Supplement V to Circulation, Vols. XXXVI

patients with isolated valvular aortic stenosis of rheumatic etiology and patients without a history of rheumatic fever who have isolated calcific aortic stenosis; many of the latter pa-

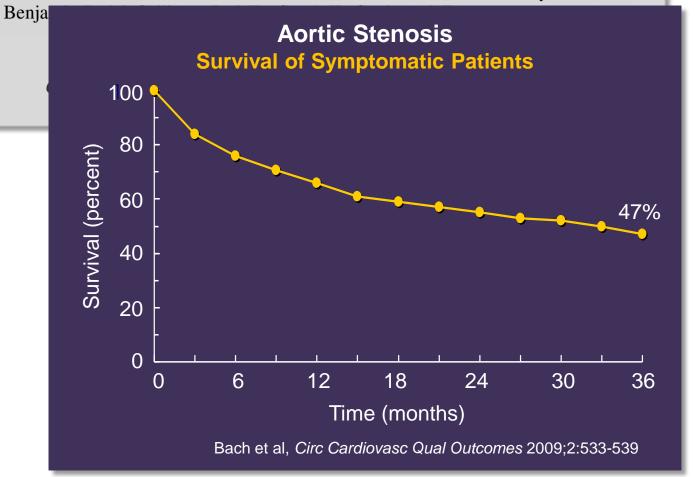
By John Ross, Jr., M.D. and Eugene Braunwald, M.D.


THE ADVENT of corrective operations for various forms of heart disease has placed increasing emphasis upon the need for accurate information concerning the natural history of patients with potentially correctible

lesions. An understanding of assumes particular importar aortic stenosis because of the dence of sudden death ass disease and the grave progto accompany the onset of

From the Cardiology Branch, National He stitute, Bethesda, Maryland.

Supplement V to Circulation, Vols. XXXVI


patients with isolated valvular aortic stenosis of rheumatic etiology and patients without a history of rheumatic fever who have isolated calcific aortic stenosis; many of the latter pa-

Evaluation of Patients With Severe Symptomatic Aortic Stenosis Who Do Not Undergo Aortic Valve Replacement The Potential Role of Subjectively Overestimated Operative Risk

David S. Bach, MD; Derrick Siao, MD; Steven E. Girard, MD, PhD; Claire Duvernoy, MD;

American Heart Association

Indications for AVR

Symptomatic patients
 with severe AS

class I

...if it is likely that the symptoms are cardiac in origin

Management challenges:

- The asymptomatic patient with severe AS
- Low-flow, low gradient severe AS
- Indications for TAVR

Management challenges:

- The asymptomatic patient with severe AS
- Low-flow, low gradient severe AS
- Indications for TAVR

Management challenges:

- The asymptomatic patient with severe AS
- Low-flow, low gradient severe AS

Are asymptomatic patients with severe AS *really* asymptomatic?

Exercise test results:

- Symptoms
- Hypotension

class I

class IIa

How are *symptoms* determined?

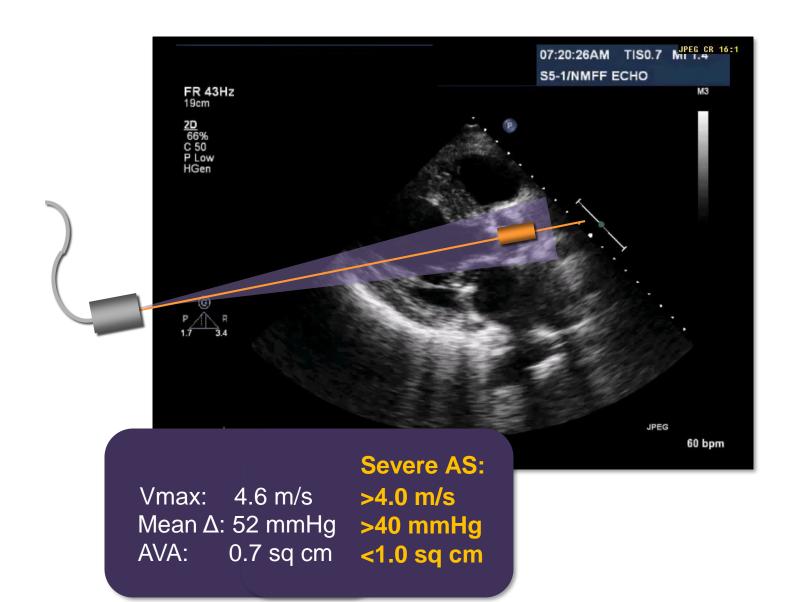
- Everyone has symptoms on stress test
- Are the symptoms cardiac in origin?
- What level of exercise?

How is *hypotension* defined?

Less than 20 mmHg increase (?)

Indications for valve replacement

Exercise test results:


- Symptoms
- Hypotension

class I

class IIa

Should asymptomatic patients with severe AS undergo AVR?
...when they are really asymptomatic?

84 year old man with severe AS

- Watchful waiting? *
- More data (more testing)?
- Aortic valve replacement?

* Wait until he develops symptoms in 5-6 years and then recommend TAVR?

84 year old man with severe AS

- Watchful waiting? *
- More data (more testing)?
- Aortic valve replacement?

* What is the risk of death while waiting for symptoms to trigger valve replacement?

Indications for valve replacement:

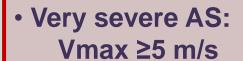
Very severe AS:
 Vmax ≥5 m/s

class lla

Indications for valve replacement:

Very severe AS:
 Vmax ≥5 m/s

 Rapid progression and low surgical risk class lla

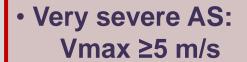

class IIb

Indications for valve replacement:

 Rapid progression and low surgical risk class Ila

class IIb

Very severe AS: Vmax >5.5 m/s


class lla

Indications for valve replacement:

 Rapid progression and low surgical risk class lla

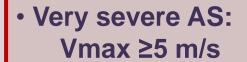
class Ilb

Very severe AS: Vmax >5.5 m/s

• Severe valve calcification and rate of progression ≥0.3 m/s / year

class lla

class lla



Asymptomatic Aortic Stenosis

Indications for valve replacement:

 Rapid progression and low surgical risk class lla

class Ilb

Very severe AS: Vmax >5.5 m/s

 Severe valve calcification and rate of progression
 ≥0.3 m/s / year

- Markedly elevated BNP
- Increase in gradient with exercise >20 mmHg
- Excessive LVH

class lla

class lla

class IIb

Asymptomatic Aortic Stenosis

Indications for valve replacement:

The ACC/AHA and ESC/EACTS guidelines have lowered the threshold for surgery in asymptomatic patients with AS

- Severity of AS
- Severity of calcification
- Left ventricular function
- Exercise response

Asymptomatic Aortic Stenosis

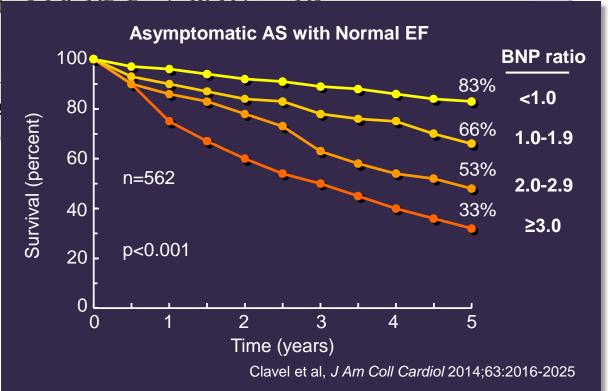
Indications for valve replacement:

The ACC/AHA and ESC/EACTS guidelines have lowered the threshold for surgery in asymptomatic patients with AS

- Severity of AS
- Severity of calcification
- Left ventricular function
- Exercise response
- BNP?

Heart Valve Disease

B-Type Natriuretic Peptide Clinical Activation in Aortic Stenosis

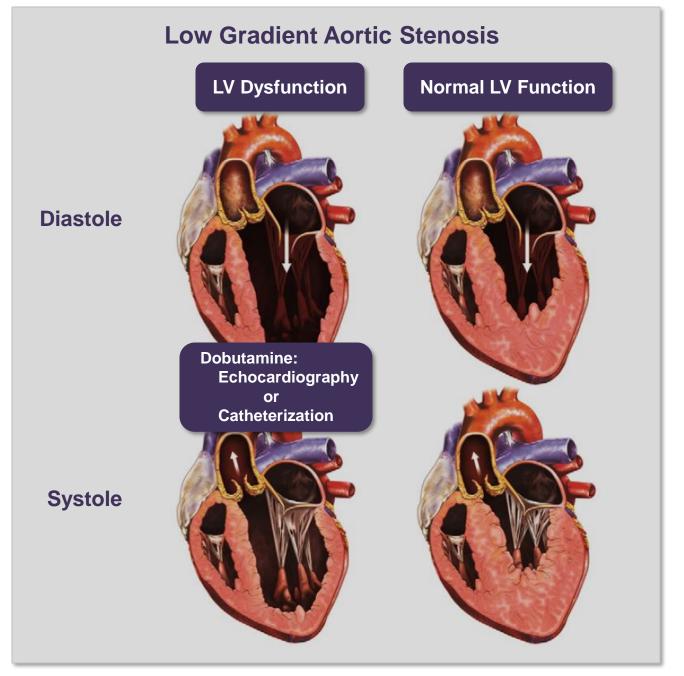

Impact on Long-Term Survival

Marie-Annick Clavel, DVM, PHD, Joseph Malouf, MD, Hector I. Michelena, MD,

Rakesh M. Suri, MD, DPHIL, All Maurice Enriquez-Sarano, MD

Rochester, Minnesota

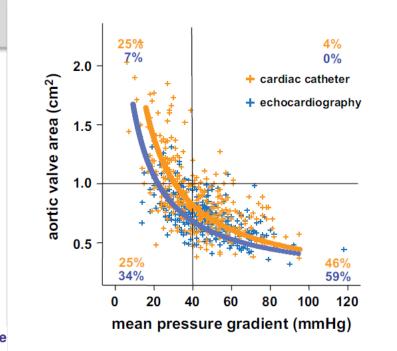
J Am Coll Cardiol 2014;63:2016-2



Aortic stenosis

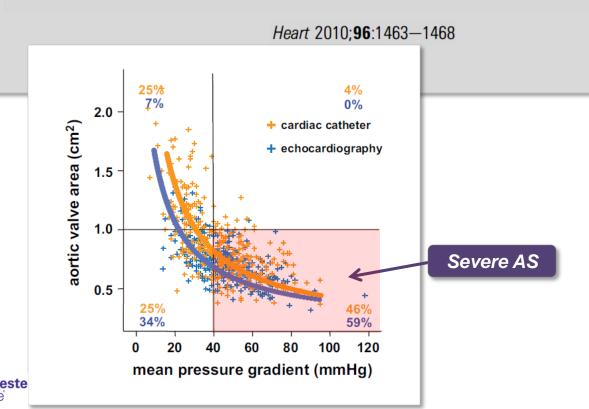
Management challenges:

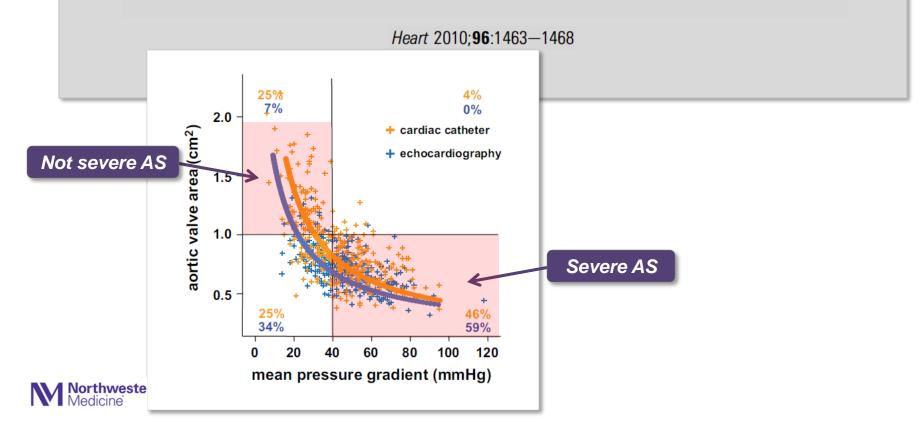
- The asymptomatic patient with severe AS
- Low-flow, low gradient severe AS
- Indications for TAVR



Inconsistent grading of aortic valve stenosis by current guidelines: haemodynamic studies in patients with apparently normal left ventricular function

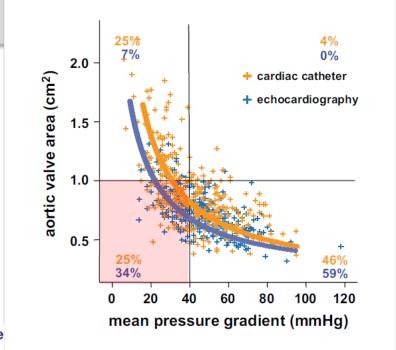
Jan Minners, Martin Allgeier, Christa Gohlke-Baerwolf, Rolf-Peter Kienzle, Franz-Josef Neumann, Nikolaus Jander


Heart 2010;**96**:1463—1468


Inconsistent grading of aortic valve stenosis by current guidelines: haemodynamic studies in patients with apparently normal left ventricular function

Jan Minners, Martin Allgeier, Christa Gohlke-Baerwolf, Rolf-Peter Kienzle, Franz-Josef Neumann, Nikolaus Jander

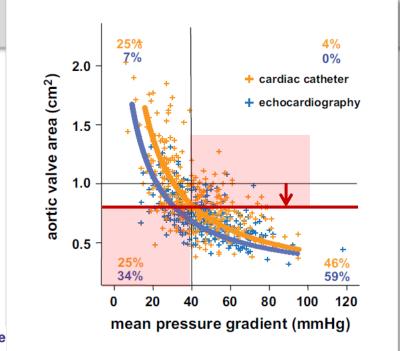
Inconsistent grading of aortic valve stenosis by current guidelines: haemodynamic studies in patients with apparently normal left ventricular function


Jan Minners, Martin Allgeier, Christa Gohlke-Baerwolf, Rolf-Peter Kienzle, Franz-Josef Neumann, Nikolaus Jander

Inconsistent grading of aortic valve stenosis by current guidelines: haemodynamic studies in patients with apparently normal left ventricular function

Jan Minners, Martin Allgeier, Christa Gohlke-Baerwolf, Rolf-Peter Kienzle, Franz-Josef Neumann, Nikolaus Jander

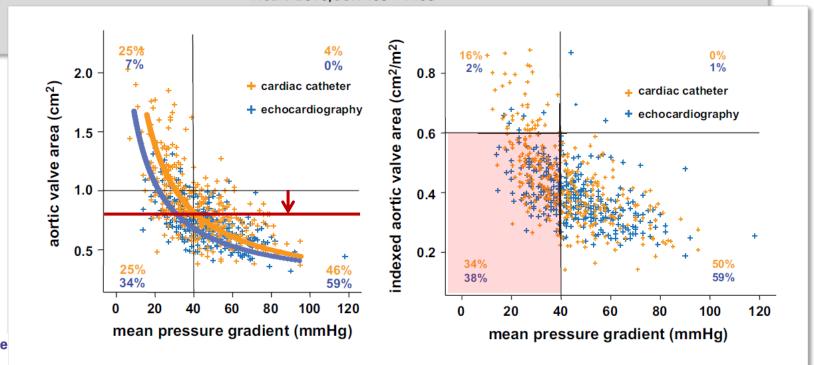
Heart 2010;**96**:1463—1468

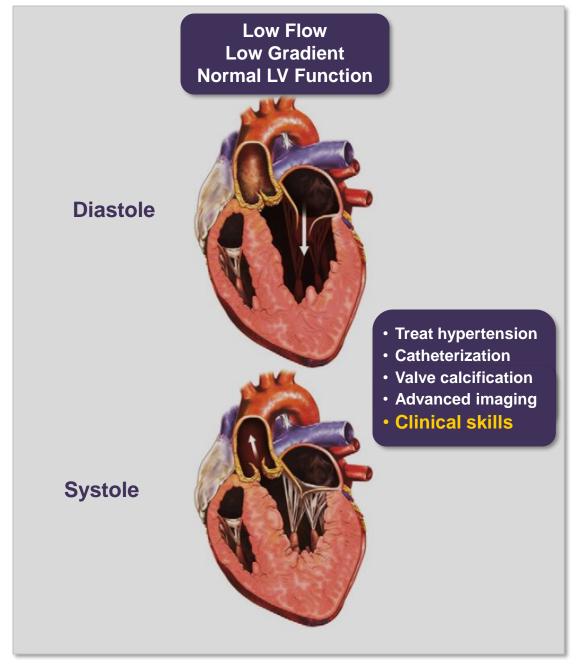


Inconsistent grading of aortic valve stenosis by current guidelines: haemodynamic studies in patients with apparently normal left ventricular function

Jan Minners, Martin Allgeier, Christa Gohlke-Baerwolf, Rolf-Peter Kienzle, Franz-Josef Neumann, Nikolaus Jander

Heart 2010;**96**:1463—1468




Inconsistent grading of aortic valve stenosis by current guidelines: haemodynamic studies in patients with apparently normal left ventricular function

Jan Minners, Martin Allgeier, Christa Gohlke-Baerwolf, Rolf-Peter Kienzle, Franz-Josef Neumann, Nikolaus Jander

Heart 2010;**96**:1463—1468

Low Flow, Low Gradient Aortic Stenosis

Indications for valve replacement:

Reduced EF:

Dobutamine study showing:
 Vmax >4 m/s or
 Mean Δ >40 mmHg or
 AVA ≤1 sq cm

class lla

Reduced EF:

With contractile reserve

Low Flow, Low Gradient Aortic Stenosis

Indications for valve replacement:

Reduced EF:

Dobutamine study showing:
 Vmax >4 m/s or
 Mean Δ >40 mmHg or
 AVA ≤1 sq cm

Normal EF:

 Only if clinical, anatomic and hemodynamic data support severe AS class lla

class IIa

Reduced EF:

With contractile reserve

Low Flow, Low Gradient Aortic Stenosis

Indications for valve replacement:

Reduced EF:

Normal EF:

 Dobutamine study showing: Vmax >4 m/s or Mean $\Delta > 40$ mmHg or AVA ≤1 sq cm

 Only if clinical, anatomic and hemodynamic data support severe AS

class lla

class lla

Reduced EF:

With contractile reserve

Normal EF:

 Only after thorough confirmation of severe AS class lla

Aortic stenosis

Management challenges:

- The asymptomatic patient with severe AS
- Low-flow, low gradient severe AS
- Indications for TAVR

Indications for TAVR vs surgical AVR:

Evaluation by a Heart Team

class I

Indications for TAVR vs surgical AVR:

- Evaluation by a Heart Team
- Surgical AVR for patients at low or intermediate risk

class I

class I

Indications for TAVR vs surgical AVR:

Evaluation by a Heart Team

 Surgical AVR for patients at low or intermediate risk

 TAVR for patients with prohibitive surgical risk and life expectancy >12 months class I

class I

class I

Indications for TAVR vs surgical AVR:

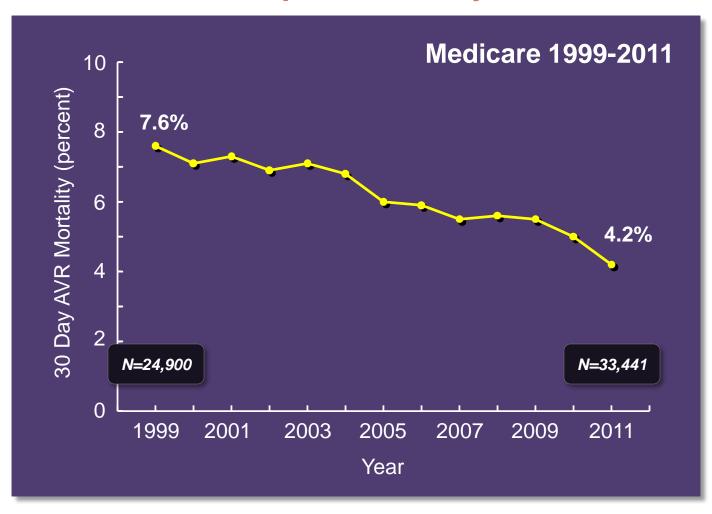
American Heart Association Evaluation by a Heart Team

Surgical AVR for patients at low or intermediate risk TAVR as alternative?

 TAVR for patients with prohibitive surgical risk and life expectancy >12 months class I

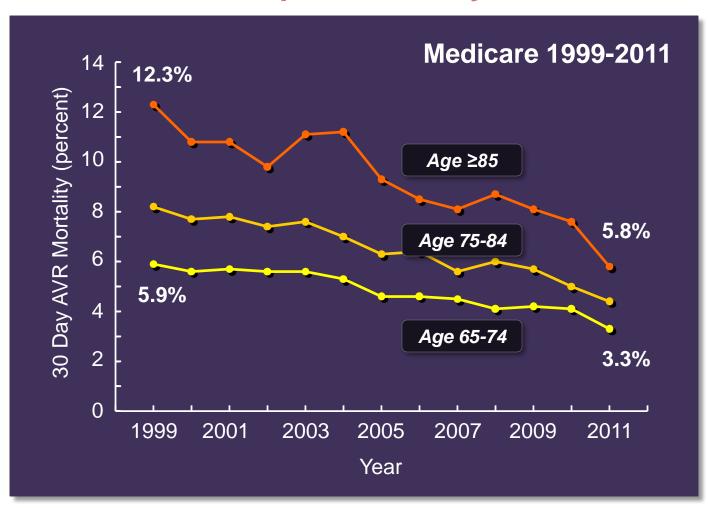
class I

class I



EACTS

7 TAVR alternative for patients at high surgical risk class !?



Aortic Valve Replacement Hospital Mortality

Aortic Valve Replacement Hospital Mortality

Series

Valvular heart disease 1

Management strategies and future challenges for aortic valve disease

Robert O Bonow, Martin B Leon, Darshan Doshi, Neil Moat

Lancet 2016; 387: 1312-23

TAVR Now

- TAVR has been truly transformative
- Surgical AVR remains the standard with proven durability and safety for most patients
- TAVR provides treatment options for patients who previously had no options other than a predictably very poor short term outcome
- TAVR is an alternative to SAVR in patients at high or intermediate surgical risk
- The threshold for TAVR is declining in clinical trials, registries and clinical practice
- All patients want this
- Determining when to withhold TAVR is difficult

TAVR in the Future

 Guidelines will need to adapt to the rapidly evolving TAVR evidence base

TAVR in intermediate and low risk surgical patients

- Availability of TAVR is likely to inform new indications for valve replacement
 - Moderate AS in primary cardiomyopathy
 - Asymptomatic severe AS?
- Judgment of the Heart Team remains essential in patient selection for TAVR
- Appropriate use criteria and performance measures are needed to define quality

Clinical Studies

Aortic Stenosis*

PAUL WOOD, O.B.E., M.D., F.R.C.P.

London, England

A ORTIC stenosis is a simple mechanical fault, which, if severe enough, imposes a heavy burden on the left ventricle and sooner or later overcomes it. An obstructive lesion of this

definition of severe stenosis is one with sufficient hypertrophy of the left ventricle to cause inversion of the T wave of the electrocardiogram in left ventricular surface leads or their

sort present surgeon. I scribe just met, and o point of vie

Aortic stenosis is a simple mechanical fault which, if severe enough, imposes a heavy burden on the left ventricle and sooner or later overcomes it.

studied uring the tic aortic of mitral

The 1958 Morris H. Nathanson Lecture, University of Southern California, Los Angeles.

...it's not simple any more

Vol. 52, No. 13, 2008 ISSN 0735-1097/08/\$34.00 oi:10.1016/i.jacc.2008.05.007

PRACTICE GUIDELINE

2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease

A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines

Developed in Collaboration With the American Association for Thoracic Surgery, American Society of Echocardiography, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Anesthesiologists, and Society of Thoracic Surgeons

Writing Committee Members*

Rick A. Nishimura, MD, MACC, Fa Co-Chair† Catherine M. Otto, MD, FACC, FA Co-Chair†

Robert O. Bonow, MD, MACC, FA Blase A. Carabello, MD, FACC*† John P. Erwin III, MD, FACC, FAF Robert A. Guyton, MD, FACC*§ Patrick T. O'Gara, MD, FACC, FAF Carlos E. Ruiz, MD, PhD, FACC† Nikolaos J. Skubas, MD, FASE¶

European Heart Journal doi:10.1093/eurheartj/ehs109

Guidelines on the management of valvular heart disease (version 2012)

Authors/Task Force Members: Alec Vahanian (Chairperson) (France)*, Ottavio Alfieri (Chairperson)* (Italy), Felicita Andreotti (Italy), Manuel J. Antunes (Portugal), Gonzalo Barón-Esquivias (Spain), Helmut Baumgartner (Germany),

Valvular heart disease:

Have the guidelines filled the gap?

Michele De Bonis nard lung anna Price (UK), nina Stepinska erlands), e Luis Zamorano

